Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 24(6): 1010-1020, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35129264

RESUMO

AIMS: To evaluate whether the potent hypophagic and weight-suppressive effects of growth differentiation factor-15 (GDF15) and semaglutide combined would be a more efficacious antiobesity treatment than either treatment alone by examining whether the neural and behavioural mechanisms contributing to their anorectic effects were common or disparate. MATERIALS/METHODS: Three mechanisms were investigated to determine how GDF15 and semaglutide induce anorexia: the potentiation of the intake suppression by gastrointestinal satiation signals; the reduction in motivation to feed; and the induction of visceral malaise. We then compared the effects of short-term, combined GDF15 and semaglutide treatment on weight loss to the individual treatments. Rat pharmaco-behavioural experiments assessed whether GDF15 or semaglutide added to the satiating effects of orally gavaged food and exogenous cholecystokinin (CCK). A progressive ratio operant paradigm was used to examine whether GDF15 or semaglutide reduced feeding motivation. Pica behaviour (ie, kaolin intake) and conditioned affective food aversion testing were used to evaluate visceral malaise. Additionally, fibre photometry studies were conducted in agouti-related protein (AgRP)-Cre mice to examine whether GDF15 or semaglutide, alone or in combination with CCK, modulate calcium signalling in hypothalamic AgRP neurons. RESULTS: Semaglutide reduced food intake by amplifying the feeding-inhibitory effect of CCK or ingested food, inhibited the activity of AgRP neurons when combined with CCK, reduced feeding motivation and induced malaise. GDF15 induced visceral malaise but, strikingly, did not affect feeding motivation, the satiating effect of ingested food or CCK signal processing. Combined GDF15 and semaglutide treatment produced greater food intake and body weight suppression than did either treatment alone, without enhancing malaise. CONCLUSIONS: GDF15 and semaglutide reduce food intake and body weight through largely distinct processes that produce greater weight loss and feeding suppression when combined.


Assuntos
Ingestão de Alimentos , Peptídeos Semelhantes ao Glucagon , Fator 15 de Diferenciação de Crescimento , Redução de Peso , Proteína Relacionada com Agouti/metabolismo , Animais , Anorexia/tratamento farmacológico , Anorexia/metabolismo , Peso Corporal/efeitos dos fármacos , Colecistocinina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Peptídeos Semelhantes ao Glucagon/farmacologia , Fator 15 de Diferenciação de Crescimento/farmacologia , Camundongos , Ratos , Redução de Peso/efeitos dos fármacos
2.
Neuroscience ; 148(2): 584-92, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17681694

RESUMO

Accumulating evidence has indicated a link between dopamine signaling and obesity in both animals and humans. We have recently demonstrated heightened avidity to sapid sweet solutions in the obese cholecystokinin (CCK)-1 receptor deficient Otsuka Long Evans Tokushima fatty (OLETF) rat. To investigate the dopamine dependence and the respective contribution of D1 and D2 receptor subtypes in this phenomenon, real and sham intake of 0.3 M sucrose solution was compared between prediabetic, obese OLETF and age-matched lean Long-Evans Tokushima Otsuka (LETO) cohorts following peripheral (i.p.) administration of equimolar doses (50-800 nmol/kg) of the D1 (R-(+) 7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, SCH23390) and D2 (raclopride) selective receptor antagonists. Both antagonists were potent in reducing sucrose intake in both strains with both drugs suppressing sham intake starting at lower doses than real intake (200 nmol/kg vs. 400 nmol/kg for SCH23390, and 400 nmol/kg vs. 600 nmol/kg for raclopride, respectively). Furthermore, when percent suppression of intake, a measure that controlled for the higher baseline sucrose intake by obese rats was analyzed, OLETF rats expressed an increased sensitivity to raclopride in reducing ingestion of sucrose with a 1.7- and 2.9-fold lower inhibitory dose threshold (ID50) for real and sham intake conditions, respectively, compared with LETO controls. In contrast, SCH23390 caused no differential strain effect with respect to dosage whether sucrose was real or sham fed. These findings demonstrate that D2 receptors are involved in heightened increased consumption of sucrose observed in the OLETF obese rat.


Assuntos
Comportamento de Ingestão de Líquido/efeitos dos fármacos , Receptor de Colecistocinina A/fisiologia , Receptores de Dopamina D2/fisiologia , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Paladar , Análise de Variância , Animais , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Racloprida/farmacologia , Ratos , Ratos Endogâmicos OLETF , Receptor de Colecistocinina A/deficiência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...